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1 Introduction

The representation of potential energy surfaces (PESs) that are fits to electronic energies is a long-

standing goal of computational chemistry.1–3 Progress to extend this goal beyond three and four-

atom systems has been made recently by using a fitting basis that is invariant with respect to all

permutations of like atoms.4 (Also consult this paper for a review of other recent approaches to

fitting PESs.) The approach makes use of powerful algorithmsfrom computational invariant poly-

nomial theory. The key feature of this method is to compute the primary andsecondaryinvariants

for a particular molecule permutation group. Once the primary and secondary invariants are com-

puted, every invariant polynomial basis function can be uniquely factorized as the product of a

secondary invariants with a polynomial of the primary invariants (typically this polynomial is just

a product of some primary invariants when constructing the invariant basis functions). The com-

putational efficiency of this representation comes from this factorization. Since every invariant

polynomial can be written as the product of two invariant polynomials, hence in the real evalua-

tion of the potential energy function, onlyN multiplications are need to evaluate all theN basis

functions, once the necessary multiplication and additions are done to evaluate the primary and

secondary invariants.

This method has been applied into a variety of molecules and molecular systems such as

CH+
5 ,5–7H+

5 ,8,9 C2H3,10 H + CH4,11–13F + CH4,14,15malonaldehyde (CHOCH2CHO),16 H3O+,17

OH + NO2,18 HO2 + NO,19 H5O+
2

20 and water dimmer (H2O)2.21,22The large set of primary and

secondary polynomial for as many as ten atom molecules was obtained with the commercial code

MAGMA .23 This large library of fitting bases is available at the iOpenShell web site.24

A much more straightforward approach to develop a permutationally invariant basis, termed

monomial symmetrization was briefly and only schematicallydescribed by Huanget al.20 The

method was described in more detail in one of the author’s Ph.D thesis25 and recently reviewed

and illustrated for several molecules.4

The monomial symmetrization approach (MSA) appears prima facie to be much less efficient

than the invariant polynomial approach and so its presentation was mainly done as a pedagogi-
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cal tool. In this paper we describe a method to make this straightforward fitting procedure quite

efficient and thus potentially competitive with the computation invariant polynomial approach. An-

other key point of the paper is to show that the implementation of the approach is fairly straight-

forward and does not require access to theMAGMA code.

The paper is organized as follows. A brief review of the monomial symmetrization approach

is presented in Section 2, followed by the algorithm to speedup the function evaluation process.

The method is exemplified by an application for the H3O+ molecule. In Section 3, numerical

experiment results for this approach are compared with the computation invariant polynomial ap-

proach. A brief discussion including some possible new directions using this approach is given in

Section 4. A summary and conclusions are given in Section 5.

2 Theoretical Background and Computational Details

2.1 Coordinate Representation of the Potential Energy Surface

The molecular potential energy surface, which we denote asV, should respect the key invariant

properties of the physics. The well-known ones are overall translational and rotational invariance.

A third one, that is obvious, but much less well known is invariance with respect to all permutations

of like atoms. This invariance has been noted in the classic book by Murrell and co-workers1 and

is at the heart of the approach recently reviewed by Braams andBowman.4 As noted in that review

and the primary sources cited there, the ideal choice of coordinates forV should enable these

invariance properties to be “built in”. The full set of internuclear distances (of which there are

n(n−1)
2 for a system ofn atoms) almost satisfy this property. That is these distances are invariant

with respect to overall translation and rotation of the molecular system. They are not invariant with

respect to permutation of like atoms; however, they are closed under these permutations and that is

the property that has been exploited to make basis functionsfor the representation ofV obey that

invariance.

Before we show how this can be done using the MSA4,20,25we make two important remarks.
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First, the full set of internuclear distances is known as a redundant set of coordinates since it is

well known that only 3n−6 internal degrees of freedom are needed to specify ann atom molecular

configuration. Thus forn greater than four there are more internuclear distances than internal

degrees of freedom and in that sense the choice is internuclear distances enlarges the space of

variables forn > 4. Second, and independent of the value ofn, internuclear distances are not a

good choice of variables for a monomial or polynomial basis to representV. This is because these

distances become arbitrarily large when fragments form andthusV would diverge erroneously in

these regions. Thus we and others use simple transformed variables that go to a constant in these

regions. There are several choices for these variables thatwe have used and some of these choices

will be given below and a specific choice is made when we consider an application to the H3O+

PES. However, to investigate how these variables permute under permutations of like atoms it is

sufficient to consider the set of internuclear distances andso we do that here.

To proceed we label then atoms in a molecule as 1, · · · ,n, hence then(n−1)
2 internuclear dis-

tances in lexical order

(r1,2, · · · , r1,n, r2,3, · · · , r2,n, · · · , rn−1,n).

Before proceeding we note that a choice of associated Morse variables that we have used exten-

sively isyi, j = exp(−r i, j/λ ). Also we introduce a shorthand notation for these distances(or Morse

variables),xl , l = 1,n(n−1)/2 where thexl are ordered according to the lexical ordering ofr i, j

(yi, j ).

To proceed it is useful to consider a specific example of a tetraatomic molecule, A4, and the six

internuclear distances

(r1,2, r1,3, r1,4, r2,3, r2,4, r3,4).

and associated variables

(x1,x2,x3,x4,x5,x6).
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The usual expression forV in terms of these variables is

V(x1,x2,x3,x4,x5,x6) =
k

∑
a+b+c+d+e+ f=0

Ca,b,c,d,e, f x
a
1xb

2xc
3xd

4xe
5xf

6 (2.1)

wherea,b,c,d,eand f are all non-negative integers, andk is a positive integer which sets the max-

imum as the sum of all the exponent. (The coefficientsCa,b,c,d,e, f would typically be determined

by a standard linear least-squares fit to a data set ofab initio electronic energies.) Clearly this

expression is not invariant with respect to permutations oflike atoms. However, it is quite straight-

forward to modify the expression so that it is. This is done bysymmetrizing the monomials, as

discussed in detail elsewhere. This creates a sum of monomials with a single coefficient, which

since it is determined by fitting we denote asDa,b,c,d,e, f .4 Consider an example permutation of

the 4 atoms where the original atom order(1,2,3,4) is permuted to(4,2,1,3). The internuclear

distances change from

(r1,2, r1,3, r1,4, r2,3, r2,4, r3,4)

to

(r4,2, r4,1, r4,3, r2,1, r2,3, r1,3)≡ (r2,4, r1,4, r3,4, r1,2, r2,3, r1,3)

or in the “x” notation

(x1,x2,x3,x4,x5,x6)

maps to

(x5,x3,x6,x1,x4,x2).

Thus the monomialxa
1xb

2xc
3xd

4xe
5xf

6 maps toxa
5xb

3xc
6xd

1xe
4xf

2(≡ xd
1xf

2xb
3xe

4xa
5xc

6) . To complete the sym-

metrization all permutations must be considered. We indicate the final result by

V =
k

∑
a+b+c+d+e+ f=0

Da,b,c,d,e, f S [xa
1xb

2xc
3xd

4xe
5xf

6], (2.2)

where “S ” is the operator that symmetrizes monomials. Examples of this were given for A2B2
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and A3B molecules elsewhere.4 This was done by explicitly enumerating all the permutations and

showing how the internuclear distances permute. For a general molecule the total number of per-

mutations is just the direct product of permutations of setsof like atoms. Thus for example for

molecule AnBm the order of the direct-product symmetric group isn!m! and the full set of permu-

tations of the sets of like atoms and how those map onto permutations of internuclear distances

must be done. We note that if the resulting monomials are re-ordered in lexical form 1,2,3,etc. the

effect of the mappings is equivalent to permuting the powersof the original “seed” monomial. We

use this convention henceforth.

The generation of the permutation of internuclear distances (or equivalently the powers) has

been automated with software we have written for any molecule26 and Algorithm 1 summarizes

the process.

Algorithm 1 : Monomial Symmetrization Approach

Data: k ; // maximum total degree of monomials
Data: P ; // permutation group
Result: B ; // invariant basis functions set
B← /0;
m← [0· · ·0];
while deg(m)≤ k do

orb(m)←{pi ·m|pi ∈P}; // pi : a permutation
B← B∪orb(m);
m←m+1 ; // get the next monomial

end

2.2 Algorithm for Efficient Basis Evaluation

Though the potential energy function as shown in Equation 2.2 has the permutational invariant

property, and we have the Algorithm 1 to generate the basis function set, the terms (the sym-

metrized sum of monomials) are costly to evaluate and so thisrepresentation is not nearly as

efficient as the one based onprimary andsecondaryinvariants.4 There clearly are strategies that

can be used to speed up the evaluation of the symmetrized sum of monomials, which henceforth

we denote as invariant polynomials.
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Clearly if the invariant polynomials could be factored into lower order invariant polynomials

that would achieve a great speed-up. To our knowledge this cannot be done easily (primary and

secondary invariants essentially do this but the computation of primary and secondary invariants

is difficult and complicated, as is the factorization). Herewe describe and test a less ambitious

factorization scheme, which is a binary factorization plusremainder method, where the remainder

is an another invariant polynomial, which may have already been computed. In order to describe

this approach we introduce some new notation and nomenclature. As noted already an invariant

polynomial (of some total degree) is the sum of all the monomials generated by acting all the

possible permutations on a seed monomial. We denote this setof monomials as the orbit of the

seed monomialm, and denote it asorb(m), which could be represented asorb(m) = {mpi |pi ∈P}.

Hence Equation 2.2 can be simplified as

V(x1,x2,x3,x4,x5,x6) =
k

∑
a+b+c+d+e+ f=0

D[abcde f]

(

∑
P

orb([abcde f])

)

, (2.3)

where[abcde f] is a shorthand notation for a general monomialxa
1xb

2xc
3xd

4xe
5xf

6.

It is clear that if∑P orb([abcde f]) could be evaluated effectively, then the whole potential

energy function could be computed effectively. One way to speed up this process is to evaluate

or build these orbits recursively, i.e., express the “later” orbits as some simple expression from

the “earlier” ones, where the terms “later” and “earlier” are yet to be defined as the ordering of

monomials.

For monomials with different total degree, it is easy to order them according their total degree.

For monomials with the same total degree, we order them according to the number of non-zero

powers. For convenience, we order a monomial with more non-zero powers before another one

with fewer non-zero elements but with same total degree, forinstance,[010101] < [030000]. If two

monomials have the same total degree and the same number of non-zero elements, then we order

these monomials according to their lexicographical order,for example,[010101] < [101010]. This

ordering scheme is made for later computational convenience. Similar to this ordering of monomi-
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als, we can also order the polynomials or orbits, and here thepolynomials are ordered according

to the “largest” monomials (ordered in the last position according to the monomial ordering) in it.

Note that for molecules with greater than four atoms the maximum total degree is typically much

less than the number of internuclear distances there are no polynomials with where everyxi has a

non-zero power.

To illustrate the approach consider the polynomialx2
1 + x2

2, which is invariant with respect to

the permutation ofx1 andx2, and note that it cannot be simply decomposed as a product of two

lower order polynomials. (It is in fact a primary invariant polynomial.) However, it can be given

as a low order product with a remainder.

x2
1 +x2

2 = (x1 +x2)(x1 +x2)−x1x2−x1x2.

As a result, if polynomialx1 + x2 andx1x2 are both in the invariant basis function sequence, and

both appear “earlier” thanx2
1 + x2

2, thenx2
1 + x2

2 could be very easily evaluated with one multipli-

cation and two subtractions. To evaluatex2
1 + x2

2 directly, we need two multiplications and one

addition . Since multiplication is more expensive than addition or “subtraction” the decomposi-

tion should speed up the evaluation process. If such a decomposition can be found for a general

invariant polynomial, the invariant basis function evaluation process will be greatly sped up.

Now the question comes to the existence and uniqueness of this kind of decomposition. Un-

fortunately, neither of these is guaranteed. For a successful decomposition, which we will denote

as a “usable decomposition” it is required that the two polynomials that form the product be of

lower degree, which of course they are, and also that the remainder polynomial come "before" the

polynomial become decomposed. This is not always the case. Another issue for the decomposition

is the uniqueness. Since there are various ways to factorizea high degree monomial as low degree

ones, for example, for a monomial[012101], it can be factorized as

[012101] = [010001] · [002100]
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or

[012101] = [011101] · [001000]

or any other two monomials whose sum of exponents equal to theoriginal exponents. Different

factorizations of the monomials result in different remainder polynomials, and different factoriza-

tion may or may not lead to a usable decomposition of a high degree polynomial.

One practical to approach to this factorization of polynomials is to list all the possible fac-

torizations of the seed (it can be any monomial of the polynomial) of a high degree polynomial.

Denoting the high degree polynomial asp1, and one monomial inp1 asm1, we havep1 = orb(m1),

and note that we do not distinguish the set of monomials asorb(m1) and the polynomial which is

the sum of all the monomials in this set. Supposep2 is a polynomial arranged beforep1 in the

invariant polynomial basis sequence, then we can scan over all the monomials inp2, if there is one

monomial (m2) in p2 that is a factor ofm1, then we can factorizem1 asm1 = m2m3, and further

find the orbit ofm3 (orb(m3)) in the polynomial basis. Further supposep3 = orb(m3), then we can

form the productp2p3. The difference betweenp2p3 and p1 should be a sum of orbits of some

other monomials (sum of some other invariant polynomials),the fewer the polynomials need to

subtract the better. If it is not possible to find a usable decomposition, then we have to evaluate

the polynomial by evaluating every monomials first. Every monomials within a polynomial that

has no usable decomposition are pushed into a queue. The speed up for this process is determined

partially by the size of the monomial queue. If most of the polynomials can be decomposed suc-

cessfully, the size of the monomial queue is small and the efficiency of the approach is high. For

monomials in the queue, the evaluation process for them could also be sped up by factorizing the

later ones as the product of earlier ones.

In summary, all the possible monomials with total degree less than some threshold are enu-

merated and grouped into orbits by the action of permutations. The sum of such monomials in a

orbit is an invariant polynomial. They are arranged according to the polynomial ordering scheme

as defined above. Then the polynomials are decomposed into the product of two polynomials and

possibly subtracting a small number of same-order polynomials if this is possible. Otherwise, the

9



polynomial is kept as the sum of monomials. A factorization step is performed for every monomial

from the previous step, and evaluated as the product of two previous ones. In the follow section,

an example will be given to show the process.

The algorithms just described above are summarized as the Algorithm 2, 3 and 4.

2.3 Example: Basis Functions for H3O+

H3O+ is an important molecule in chemistry, and it has three identical hydrogen atoms which make

it a good example to illustrate the MSA process. Of course theresults shown apply to any A3B

molecule.

The three H atoms are labeled as 1, 2, 3 and the O atom is labeledas 4. Table 1 shows all the

permutation actions on H3O+ and also on a general monomial[abcdef]. For the demonstration

purpose,a, · · · , f are all different integers, in reality, some of them may be equal, consequently,

the orbit of a monomial[abcdef] may has less than 6 monomials, and this is shown in Table 2.

Table 2 lists all the invariant polynomial basis for molecule H3O+ up to degree 3. All those

polynomials that have usable decomposition under the polynomial ordering scheme are indicated

as a product of two other basis function less some other basisfunctions. As for those do not have

usable decomposition, the decomposition is written as the sum of monomials.
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Algorithm 2 : Trial and error decomposition algorithm for all the permutationally invariant
basis functions

Data: B ; // invariant basis functions set
Result: D ; // decomposition of bi ∈ B
Result: M ; // monomial set
BP← /0 ; // single term polynomial set
// populate the single term polynomial set
foreachbi ∈ B do

if |bi|= 1 then
BP← BP∪bi ;

end
end
// trying to decompose every basis function
M← /0;
iM← 0 ; // size index of M
foreachbi ∈ B do

if bi ∈ BP then
// deal with single term basis function
M←M∪bi;
iM← iM +1;
D← D∪ [i,0, iM]; // 0 indicates failed decomposition

else
// deal with multiple terms basis function
if (∃bm,bn,bl1, · · · ≤ bi)∨ (bi = bm ·bn−bl1−·· ·) then

// the basis function has a usable decomposition
D← D∪ [i,1,m,n, l1, · · · ]; // 1 indicates successful
decomposition

else
// the basis function has no usable decomposition
M←M∪mono(bi); // save the monomial set
D← D∪ [i,0, iM +1, · · · , iM + |bi|]; // record the sum of monomials
iM← iM + |bi|;

end
end

end

11



Algorithm 3 : Decomposition of a basis function (polynomial)bi

Data: B,bi ∈ B; // invariant basis functions set, and one basis
Result: bi = bm ·bn−bl · · · ,(m,n, l , · · · ≤ i) or fail
D← /0; // usable decomposition set
m1← seed(bi); // m1 ∈ mono(bi)
foreachb j ∈ B∨b j < bi do

if ∃m2 ∈mono(b j)∨m1 = m2 ·m3 then
bm← b j ;
bn← orb(m3);
p← bm×bn−bi;
if (∃bl1, · · · ∈ B)∨ (bl1, · · ·< bi)∨ (p = ∑i bl i) then

D← D∪ [i,m,n, l1, · · · ];
end

end
end
if D = /0 then

return fail;
else

return d ∈ D : |d| ≤ |di|,∀di ∈ D; // return the simplest decomposition
end

Algorithm 4 : Decomposition of Monomials

Data: M ; // a monomial set
Result: H ; // the decomposition of monomials
H← /0;
foreachm∈M do

if (∃mi,mj ∈M)∨ (mi,mj < m)∨ (m= mi ·mj) then
H← H ∪ [i, j];

else
H← H ∪m;

end
end

Table 1: The permutation of the H3O+ molecule and its action on a general monomial[abcdef]

Permutation Atom Labels Internuclear Distance Vector Permuted Monomial

p1 1 2 3 4 (x1, x2, x3, x4, x5, x6) [abcdef]
p2 1 3 2 4 (x2, x1, x3, x4, x6, x5) [bacdfe]
p3 2 1 3 4 (x1, x4, x5, x2, x3, x6) [adebcf]
p4 2 3 1 4 (x4, x1, x5, x2, x6, x3) [daebfc]
p5 3 1 2 4 (x2, x4, x6, x1, x3, x5) [bdface]
p6 3 2 1 4 (x4, x2, x6, x1, x5, x3) [dbfaec]
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Table 2: invariant polynomails basis for molecule H3O+ up to degree 3

ID degree invariant polynomial basis Decomposition

B0 0 [000000] M0

B1 1 [000001] + [000010] + [001000] M1 +M2 +M3

B2 1 [000100] + [010000] + [100000] M4 +M5 +M6
B3 2 [000011] + [001001] + [001010] M7 +M8 +M9

B4 2 [001100] + [010010] + [100001] M10+M11+M12

B5 2 [000101] + [000110] + [010001] + [011000] + [100010] + [101000] B1 ·B2−B4

B6 2 [010100] + [100100] + [110000] M13+M14+M15
B7 2 [000002] + [000020] + [002000] B1 ·B1−B3−B3

B8 2 [000200] + [020000] + [200000] B2 ·B2−B6−B6
B9 3 [001011] M16
B10 3 [001101] + [001110] + [010011] + [011010] + [100011] + [101001] M17+M18+M19+M20+M21+M22

B11 3 [000111] + [011001] + [101010] B2 ·B3−B10

B12 3 [010110] + [011100] + [100101] + [101100] + [110001] + [110010] M23+M24+M25+M26+M27+M28

B13 3 [110100] M29

B14 3 [010101] + [100110] + [111000] B1 ·B6−B12

B15 3 [000012] + [000021] + [001002] + [001020] + [002001] + [002010] B1 ·B3−B9−B9−B9

B16 3 [002100] + [010020] + [100002] B1 ·B4−B10

B17 3 [000102] + [000120] + [010002] + [012000] + [100020] + [102000] B2 ·B7−B16
B18 3 [001200] + [020010] + [200001] B2 ·B4−B12

B19 3 [000201] + [000210] + [020001] + [021000] + [200010] + [201000] B1 ·B8−B18

B20 3 [010200] + [020100] + [100200] + [120000] + [200100] + [210000] B2 ·B6−B13−B13−B13

B21 3 [000003] + [000030] + [003000] B1 ·B7−B15
B22 3 [000300] + [030000] + [300000] B2 ·B8−B20
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The factorization of all the monomials is shown in Table 3.

Table 3: Factorization of the monomials from those basis functions that do not have usable decom-
position for H3O+ molecule

ID Monomial factorization ID Monomial factorization

M0 [000000] 1 M15 [110000] M5 ·M6
M1 [000001] x6 M16 [001011] M1 ·M9

M2 [000010] x5 M17 [001101] M1 ·M10

M3 [001000] x3 M18 [001110] M2 ·M10

M4 [000100] x4 M19 [010011] M1 ·M11

M5 [010000] x2 M20 [011010] M3 ·M11

M6 [100000] x1 M21 [100011] M2 ·M12

M7 [000011] M1 ·M2 M22 [101001] M3 ·M12

M8 [001001] M1 ·M3 M23 [010110] M2 ·M13

M9 [001010] M2 ·M3 M24 [011100] M3 ·M13

M10 [001100] M3 ·M4 M25 [100101] M1 ·M14

M11 [010010] M2 ·M5 M26 [101100] M3 ·M14

M12 [100001] M1 ·M6 M27 [110001] M1 ·M15
M13 [010100] M4 ·M5 M28 [110010] M2 ·M15
M14 [100100] M4 ·M6 M29 [110100] M4 ·M15

As we can see from Table 2, quite a lot of the basis functions have usable decompositions,

and can be expressed as the product of two lower degree basis functions and less some other basis

functions at the same degree but come before the current invariant basis. As a result, the evaluation

of those basis function cost one multiplication with some addition. For those monomials, almost

all of them could be factorized as a product of two previous ones, this significantly reduced the

monomial evaluation time especially when the total degree of monomial get higher and higher. All

those monomials that can not be factorized are those single variable terms, and they are trivial to

evaluate.

2.4 Applications to Other Molecules

Relevant information about the monomial and symmetrized monomial basis for a variety of molecules

and total degree is given in Table 4. Columns three and four give the size of the monomial and

symmetrized monomial (polynomial) basis for each example.The reduction in size for the polyno-
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mial basis is large. However, it is not as large as the order ofthe corresponding symmetric group;

this reduction factor is only approached as the total degreeapproaches infinity. For example for

A4 the maximum possible reduction is 24 and as seen for degree 8 the actual reduction is 15.4.

Next consider the number of polynomials and the percentage of the of all polynomials that have a

usable decomposition shown in column 5 and 6. The percent ranges from almost 100 % to a low of

51.95 %. The number of remainder monomials to be evaluated and the number that can be factored

are given next. Finally, an "Efficiency" column is included which contains two values. The ratio

of total monomials to total polynomials is given in parentheses and the first number is the ratio of

monomials to the sum of usable decomposition plus monomialsleft.
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Table 4: Invariant Polynomial Basis Function DecompositionInformation

Molecule Max Deg Tot Mono. Tot Poly. Usable Decomp. Usable Decomp. % Mono Left Mono Fact Efficiency

A3 6 84 23 19 82.61 % 8 4 3.11 (3.65)
A3 8 165 41 37 90.24 % 8 4 3.67 (4.02)

A2B 6 84 50 46 92.00 % 5 1 1.65 (1.68)
A2B 8 165 95 91 95.79 % 5 1 1.72 (1.74)

A4 6 924 72 60 83.33 % 88 81 6.24 (12.83)
A4 8 3003 195 182 93.33 % 112 105 10.21 (15.40)

A3B 6 924 196 185 94.39 % 33 26 4.24 (4.71)
A3B 8 3003 590 579 98.14 % 33 26 4.91 (5.09)

A2B2 6 924 291 282 96.91 % 18 11 3.08 (3.18)
A2B2 8 3003 882 873 98.98 % 18 11 3.37 (3.40)
A2BC 6 924 502 494 98.41 % 11 4 1.83 (1.84)
A2BC 8 3003 1589 1581 99.50 % 11 4 1.89 (1.89)

A5 6 8008 140 94 67.14 % 2368 2357 3.25 (57.20)
A5 8 43758 580 443 76.38 % 10158 10147 4.13 (75.44)

A4B 6 8008 495 437 88.28 % 807 796 6.44 (16.18)
A4B 8 43758 2327 2216 95.23 % 1953 1942 10.50 (18.80)

A3B2 6 8008 889 838 94.26 % 390 367 6.52 (9.01)
A3B2 8 43758 4343 4249 97.84 % 876 853 8.54 (10.08)
A3BC 6 8008 1603 1565 97.63 % 161 150 4.64 (5.00)
A3BC 8 43758 8163 8121 99.49 % 185 174 5.27 (5.36)

A2B2C 6 8008 2304 2278 98.87 % 72 61 3.41 (3.48)
A2B2C 8 43758 11910 11884 99.78 % 72 61 3.66 (3.67)

A2BCD 6 8008 4264 4249 99.65 % 22 11 1.87 (1.88)
A2BCD 8 43758 22734 22719 99.93 % 22 11 1.92 (1.92)

A5B2 4 12650 218 148 67.89 % 4997 4975 2.46 (58.03)
A5B2 6 296010 2651 2080 78.46 % 78066 77924 3.69 (111.66)
A6B3 3 9139 77 40 51.95 % 5485 5448 1.65 (118.69)
A6B3 4 91390 327 208 63.61 % 47533 47496 1.91 (279.48)
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Perusal of this table leads to the conclusion that the current factorization method works better

for molecules with 2 or 3 identical atoms than for molecules with more identical atoms. On the

other hand the size of polynomial basis decreases by a largerfactor for such molecules (obviously

since the order of the symmetric group increases).

The lack of usable decomposition for all (invariant) polynomials in the present algorithm comes

from the polynomial ordering scheme. It is not difficult to show that any high degree invariant poly-

nomial constructed using monomial symmetrization approach, can be represented as the product

of two low degree polynomials and a remainder invariant polynomial of the same degree. If the

polynomial ordering scheme can ensure that polynomials need to be subtracted are always come

before the target polynomial, then the inefficiency factor could be removed and we can claim that

the monomial symmetrization approach is almost as fast as the computation invariant theory based

approach. However, this ordering scheme is difficult to construct. A simple example may show

the difficulty. Suppose thatx1 +x2, x2
1 +x2

2 andx1x2 are invariant polynomials with respect to the

permutation ofx1 andx2. Bothx2
1 +x2

2 andx1x2 are of degree 2, andx1 +x2 is of degree 1, which

is always come before the other two polynomials.x2
1 +x2

2 could be decomposed as

x2
1 +x2

2 = (x1 +x2) · (x1 +x2)−x1x2−x1x2 (2.4)

andx1x2 could be decomposed at

x1x2 = (x1 +x2) · (x1 +x2)− (x2
1 +x2

2)−x1x2. (2.5)

It is easy to rearrange Equation 2.5 as

2x1x2 = (x1 +x2) · (x1 +x2)− (x2
1 +x2

2). (2.6)

As can be seen, no mater the polynomial ordering scheme is (whetherx1x2 comes beforex2
1 + x2

2

or after it), there is always one useless decomposition. Unfortunately, one ofx1x2 andx2
1+x2

2 must
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be evaluated explicitly. This coincide with the primary invariants.

In another case, suppose that we have invariants

A = x4
1 +x4

2

B = x2
1x2

2 (2.7)

C = x1x3
2 +x3

1x2,

and they could be decomposed as

A = (x2
1 +x2

2) · (x
2
1 +x2

2)− (x2
1x2

2 +x2
1x2

2)

B = (x1x2
2 +x2

1x2) · (x1 +x2)− (x1x3
2 +x3

1x2)−x2
1x2

2 (2.8)

C = (x1 +x2) · (x
3
1 +x3

2)− (x4
1 +x4

2).

x1 +x2, x2
1 +x2

2, x3
1 +x3

2 andx1x2
2 +x2

1x2 are at lower degree comparing toA, B andC, hence their

values are supposed to be calculated. Consequently, the decomposition can be simplified as

A = α−2B

B = β −C−B (2.9)

C = γ−A,

where

α = (x2
1 +x2

2) · (x
2
1 +x2

2)

β = (x1x2
2 +x2

1x2) · (x1 +x2) (2.10)

γ = (x1 +x2) · (x
3
1 +x3

2),

and they can be regarded as constant.
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It is obvious thatA, B andC are intertwined, and some of them must be evaluated by brute

force. However, Equation 2.9 could be regarded as a linear system as













1 2 0

0 2 1

1 0 1













·













A

B

C













=













α

β

γ













(2.11)

which can be solved easily as

A =
1
2

α−
1
2

β +
1
2

γ

B =
1
4

α +
1
4

β −
1
4

γ (2.12)

C =−
1
2

α +
1
2

β +
1
2

γ.

This indicates that it is possible to further decouple intertwined polynomials, and obtain their

usable decomposition simultaneously by solving a linear system. Solving the linear system is an

extra cost for the decomposition, but it is an one time cost, and it will not be inherited in the future

polynomial evaluation process. As a result, we can further speed up the polynomial evaluation

process. We plan to investigate an implementation of this algorithm in the future.

3 Application to a Potential Surface for H3O+

The methods described in the previous section to automate the symmetrization of the monomial

basis and to evaluate the subsequent terms by means of the decomposition procedure are applied to

the potential energy surface of H3O+. An unpublished PES for this cation was obtained using the

invariant polynomial approach previously25 and this serves as the “benchmark” PES both in terms

of precision and speed of evaluations. The precision and speed of evaluation of the monomial

symmetrization approach will be tested against this benchmark.

H3O+ potential energy surface is a well studied surface.17,27,28Previously, the invariant poly-
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nomial basis functions were used for the fit and these were constructed based on computational

invariant theory. Here we directly compare these two methods (both implemented inC++). The

internuclear distancesx are is replaced by the variables 1.0−exp(−0.2x)2 as usual.4 61604 H3O+

configurations were gathered by low-level direct moleculardynamics and further the energies were

evaluated based on CCSD(T) method with aug-cc-pVTZ basis. Theenergy range for these con-

figurations is about 29674 cm−1 (84.84 kcal/mol). The maximum total degree for the polynomial

basis is set to be 6. This is the same total degree used for the invariant polynomial fit. Since both

approach have the same number of basis functions, the numberof coefficients is also the same.

Note that the coefficients values are different since the basis functions from two approach differ.

The coefficients for both fits were obtained with standard least-squares codes. The final root mean

square error for both fitting approaches are 29.03 cm−1, with the maximum absolute residual value

deviation at 0.16 cm−1. As expected, there is almost no difference is observed for the accuracy of

these two approach.

After obtaining the coefficients, we evaluated the energiesfor the molecule configurations in

the original data set used for fitting three times which results 184812 potential function calls in

total. The computational invariant theory approach took 8.77 seconds, and the modified monomial

symmetrization approach took 9.50 seconds. It is about 8% less efficiency for the monomial sym-

metrization approach which are almost negligibly. Comparing the details of these two approaches,

it is not difficulty to notice and the slightly more time is consumed in evaluating and summing

the monomials from those polynomial basis function that cannot be effectively decomposed. For

H3O+ molecule, the number of monomials does not change when the maximum total degree of

polynomial basis function get higher and higher. As a result, the timing difference would be virtu-

ally the same.
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4 Discussion

Perhaps the most striking practical effect of symmetrizingthe monomial expression for the poten-

tial, Equation 2.1 is the very large reduction in the number of terms and hence unknown linear

coefficients to be determined. This was illustrated in Table4 where the number of monomials in

the unsymmetrized expression forV is compared to the number of symmetrized polynomials. The

ratio of these two numbers approaches the order of the symmetric group in the limit of infinitely

many terms in both expressions; however, as seen even for modest total orders the reduction can

be very big. Practically this has allowed us to consider molecules with up to 9 atoms and to deal

with a relatively small linear algebra least-squares minimization. This very practical advantage is

realized by using the full permutation group of a molecule.

This practical advantage in exploiting the full permutational symmetry also holds for molecular

complexes. For example consider the water dimer and trimer,where the order of the symmetric

group is 4!2!= 48 and 6!3!= 4320, respectively. Potential energy surfaces for both thewater

dimer and trimer, using the full permutational symmetry have been reported.16,29However, phys-

ically one knows that for temperatures or total energies of interest most of these permutations are

infeasible, that is they must surmount high potential barriers to be realized. Thus it would seem that

using the full symmetric group, while greatly reducing the number of terms inV, is also physically

irrelevant. Ideally one would like a representation that both greatly reduces the number of terms

in V and only describes the feasible permutations. (In the case of water clusters this would be the

permutations of the H atoms associated with each monomer unit.) If one is going to continue to use

all the internuclear distances (probably with a standard many-body representation of the potential)

then it seems clear that the one will have to restrict the range of powers of some of the internuclear

distances. The presumably would be the monomer internuclear distances which undergo small am-

plitude motion. In fact a rather primitive version of this type of restriction was used in a monomial

representation of the global potential of H2CO for the CO internuclear distance.30 Further work

along these lines is planned.

Also, as the observant reader has noted the use of the Morse-type variables introduces a non-
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linear range parameter. Generally we have used a single range parameter, typically 2-3 Bohr,

for all variables. In principle this parameter could be optimized and also made specific for a

given set of internuclear distances, e.g., all OH, HH, and OOdistances. Doing so would turn

the straightforward linear-least squares optimization into a combination of linear and non-linear

optimizations. This may be worth considering; however, with a substantial increase in numerical

complexity.

Finally we note that the library of primary and secondary invariant polynomials referred to

in the paper does not include analytical expressions for partial derivatives. This may be done in

the future; however, it will involve considerable symboliccomputation. It is clear that using the

monomial symmetrization described here this task is made much easier for the user. We plan to do

this in the near future.

5 Conclusions

We have presented a straightforward monomial symmetrization scheme for the representation of a

multidimensional potential energy surface. We have proposed one scheme for efficient evaluation

of the results terms in the representation and have illustrated the approach by fitting roughly 62,000

electronic energies for H3O+. Some comments for future directions were also made.

The codes described herein can be obtained by contacting either author.

Acknowledgement

This work was supported by the Office of Advanced Scientific Computing Research, Office of

Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357 and the Office of

Basic Energy Sciences, DE-FG02-97ER14782.

22



References

(1) Murrell, J. N.Molecular potential energy functions; J. Wiley: Chichester [West Sussex] ;

New York, 1984.

(2) Schatz, G. C.Rev. Mod. Phys.1989, 61, 669–688.

(3) Hollebeek, T.; Ho, T. S.; Rabitz, H.Annu. Rev. Phys. Chem.1999, 50, 537–570.

(4) Braams, B. J.; Bowman, J. M.Int. Rev. Phys. Chem.2009, in press.

(5) Jin, Z.; Braams, B.; Bowman, J.J. Phys. Chem. A2006, 110, 1569–1574.

(6) Christoffel, K.; Jin, Z.; Braams, B.; Bowman, J.J. Phys. Chem. A2007, 111, 6658–6664.

(7) Mann, J.; Xie, Z.; Savee, J.; Braams, B.; Bowman, J.; Continetti, R. J. Am. Chem. Soc.2008,

130, 3730.

(8) Xie, Z.; Braams, B.; Bowman, J.J. Chem. Phys.2005, 122, 224307.

(9) Acioli, P.; Xie, Z.; Braams, B.; Bowman, J.J. Chem. Phys.2008, 128, 104318.

(10) Park, W.; Park, J.; Park, S.; Braams, B.; Chen, C.; Bowman, J.J. Chem. Phys.2006, 125,

081101.

(11) Zhang, X.; Braams, B.; Bowman, J.J. Chem. Phys.2006, 124, 021104.

(12) Xie, Z.; Bowman, J.; Zhang, X.J. Chem. Phys.2006, 125, 133120.

(13) Xie, Z.; Bowman, J.Chem. Phys. Lett.2006, 429, 355–359.

(14) Czako, G.; Braams, B.; Bowman, J.J. Phys. Chem. A2008, 112, 7466–7472.

(15) Czako, G.; Shepler, B.; Braams, B.; Bowman, J.J. Chem. Phys.2009, 130, 084301.

(16) Wang, Y.; Braams, B.; Bowman, J.; Carter, S.; Tew, D.J. Chem. Phys.2008, 128, 224314.

(17) Mann, J.; Xie, Z.; Savee, J.; Bowman, J.; Continetti, R.J. Chem. Phys.2009, 130, 041102.

23



(18) Chen, C.; Shepler, B.; Braams, B.; Bowman, J.J. Chem. Phys.2007, 127, 104310.

(19) Chen, C.; Shepler, B.; Braams, B.; Bowman, J.Phys. Chem. Chem. Phys.2009, 11, 4722–

4727.

(20) Huang, X.; Braams, B.; Bowman, J.J. Chem. Phys.2005, 122, 044308.

(21) Huang, X.; Braams, B.; Bowman, J.J. Phys. Chem. A2006, 110, 445–451.

(22) Shank, A.; Wang, Y.; Kaledin, A.; Braams, B.; Bowman, J.J. Chem. Phys.2009, 130, 144314.

(23) Bosma, W.; Cannon, J.; Playoust, C.J. Symbolic Comput.1997, 24, 235–265.

(24) iOpenShell, http://iopenshell.usc.edu/.

(25) Xie, Z. Ph.D. thesis, Emory University, 2008.

(26) MSA Code URL, http://www.mcs.anl.gov/~zhenxie/codes/msa.tgz.

(27) Huang, X.; Carter, S.; Bowman, J.J. Chem. Phys.2003, 118, 5431–5441.

(28) Rajamaki, T.; Miani, A.; Halonen, L.J. Chem. Phys.2003, 118, 10929–10938.

(29) Huang, X.; Braams, B.; Bowman, J.; Kelly, R.; Tennyson, J.; Groenenboom, G.; der

avoird, A. V.J. Chem. Phys.2008, 128, 034312.

(30) Zhang, X. B.; Zou, S. L.; Harding, L. B.; Bowman, J. M.J. Phys. Chem. A2004, 108, 8980–

8986.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Governmentretains for
itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

24


